MURAER: Mapping Unlabeled Real Data for Label AUstERity

Georg Poier Michael Opitz David Schinagl Horst Bischof

Motivation

- Learning accurate models requires a large amount of labeled data
- Accurate labeling vital
- Synthetic data can help
 - But: domain gap
- Mitigated using corresponding real ↔ synthetic data [1,2]
 - But: using correspondence required labeling

Implementation

- Overall loss:
 \[\ell = \ell_\text{pose} + \lambda \ell_\text{match} + \ell_\text{dist} \]

- Enforce pose specificity (by learning to predict/reconstruct other view [3]):
 \[\ell_\text{pose} = \sum_{x} \| f(x) - f(x') \|_2 \]

- Enforce feature distribution alignment (adversarial; LS-GAN [4]):
 \[\ell_\text{dist} = \sum_{x} \| f(x) - f(x') \|_2 \]

Idea

- Map features real to synthetic without labels/correspondence
- Using two auxiliary objectives computed from unlabeled data:
 (i) enforcing pose specificity [3]
 (use 2 views, predict one from the other)
 (ii) enforcing to align real and synthetic samples
 (make distributions indistinguishable)

Findings

- Comp. to state-of-the-art
- Ablation
- Qualitative results

References

Finding aggregated graphs not well aligned real and synthetic samples trained with only 100 labeled real & unlabeled & synthetic samples

Baseline trained with real & synth.
Ours trained with real & synth. & unlabeled

References