
Enforce distribution alignment

Enforce pose specifity

Learning accurate models requires 
a large amount of labeled data

Accurate labeling vital

Synthetic data can help

 But: domain gap

Mitigated using 
corresponding real      synthetic data [1,2]

 But: using correspondence required labeling

MURAUER: Mapping Unlabeled Real Data
for Label AUstERity

Overall loss:

Enforce pose specifity (by learning to predict/reconstruct other view [3]):

Enforce feature distribution alignment (adversarial; LS-GAN [4]):
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Map features 
    real to synthetic 
    without labels/correspondence

Using two auxilliary objectives
computed from unlabeled data:

(i) enforcing pose specifity [3]
    (use 2 views, predict one from the other)

(ii) enforcing to align
     real and synthetic samples
     (make distributions indistinguishable)

Project page: 
poier.github.io/murauer
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Discriminator output: real valued label

Discriminator between real and synthetic 

Mapping tries to make real indistinguishable from synthetic

Implementation
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Train with synthetic data only
     real and synthetic 
     representations are separated

Findings

Comp. to state-of-the-art

Mapped latent representation
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trained with 
real & synth.

Ours
trained with 
real & synth.
& unlabeled

Qualitative results

well aligned real and synthetic samples 
trained with only 100 labeled real & unlabeled & synthetic samples
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