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Motivation

" Learning accurate models requires
a large amount of labeled data

= Accurate labeling vital

= Synthetic data can help

= But: domain gap

= Mitigated using
corresponding real «» synthetic data [1,2]

= But: using correspondence required labeling

ldea

= Map features
real to synthetic
without labels/correspondence

= Using two auxilliary objectives
computed from unlabeled data:

(1) enforcing pose specifity [3]
(use 2 views, predict one from the other)

(11) enforcing to align
real and synthetic samples
(make distributions indistinguishable)

Train with synthetic data only
=» cal and synthetic
representations are separated
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MURAUER: Mapping Unlabeled Real Data
for Label AUstERIty
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= Qverall loss:
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Implementation

real/synthetic

shared weights ]  latent representation

Enforce pose specifity

iEnforce distribution alignment
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= Enforce pose specifity (by learning to predict/reconstruct other view [3]):
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" Enforce feature distribution alignment (adversarial; LS-GAN [4]):
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Discriminator output: real valued label
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} % ZkES (lk — ls) Discriminator between real and synthetic

Mapping tries to make real indistinguishable from synthetic

Project page:
poier.github.io/murauer

Findings

Comp. to state-of-the-art Ablation Qualitative results
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Mapped latent representation

well aligned real and synthetic samples
trained with only 100 labeled real & unlabeled & synthetic samples
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